题目内容

从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是(  )
分析:对立事件是在互斥的基础之上,在一次试验中两个事件必定有一个要发生.根据这个定义,对各选项依次加以分析,不难得出选项B才是符合题意的答案.
解答:解:对于A,“至少有1个白球”发生时,“至少有1个红球”也会发生,
比如恰好一个白球和一个红球,故A不对立;
对于B,“至少有1个白球”说明有白球,白球的个数可能是1或2,
而“都是红球”说明没有白球,白球的个数是0,
这两个事件不能同时发生,且必有一个发生,故B是对立的;
对于C,恰有1个白球,恰有2个白球是互斥事件,它们虽然不能同时发生
但是还有可能恰好没有白球的情况,因此它们不对立;
对于D,至少有1个白球和都是白球能同时发生,故它们不互斥,更谈不上对立了
故选B
点评:本题考查了随机事件当中“互斥”与“对立”的区别与联系,属于基础题.互斥是对立的前提,对立是两个互斥事件当中,必定有一个要发生.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网