题目内容
二次函数y=-x2+6x+k的值域为(-∞,0],求k的值.
解析:∵二次函数y=-x2+6x+k的值域为(-∞,0],?
∴其最小值为0,即顶点纵坐标为0,从图形上看就二次函数的图象与x轴相切.
答案:法1:y=-x2+6x+k=-(x-3)2+k+9.?
∵值域为(-∞,0],?
∴k+9=0,k=-9.?
法2:∵二次函数开口向下,值域为(-∞,0],?
∴其图象与x轴相切,判别式Δ=0,?
即Δ=62-4·(-1)·k=36+4k=0.?
∴k=-9.
练习册系列答案
相关题目