题目内容
用数学归纳法证明:当n为正整数时,13+23+33+……+n3=
.
证明:(1)当n=1时,左边=1,右边=
=1,
∴等式成立.································ 2分
(2)假设当n=k时,等式成立,即
13+23+33+……+k3=
.······················ 4分
那么,当n=k+1时,有
13+23+33+……+k3+(k+1)3=
+(k+1)3.············· 6分
=(k+1)2(
+k+1)=(k+1)2
=![]()
=
.··························· 9分
这就是说,当n=k+1时,等式也成立.··················· 10分
根据(1)和(2),可知对n∈N*等式成立. 12分
练习册系列答案
相关题目