题目内容
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM•AN是否为定值,若是,则求出定值;若不是,请说明理由.
解:(1)①若直线l1的斜率不存在,即直线x=1,符合题意.(2分)
②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
即
解之得
.
所求直线方程是x=1,3x-4y-3=0.(5分)
(2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx-y-k=0
由
得
又直线CM与l1垂直,
得
.
∴AM*AN=
为定值.(10分)
分析:(1)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论;
(2)分别联立相应方程,求得M,N的坐标,再求AM•AN.
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
即
所求直线方程是x=1,3x-4y-3=0.(5分)
(2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx-y-k=0
由
∴AM*AN=
分析:(1)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论;
(2)分别联立相应方程,求得M,N的坐标,再求AM•AN.
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关题目