题目内容
已知函数f(x)=
(sin2x-cos2x)-2sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设x∈[-
,
],求f(x)的值域和单调递增区间.
| 3 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设x∈[-
| π |
| 3 |
| π |
| 3 |
(Ⅰ)∵f(x)=-
(cos2x-sin2x)-2sinxcosx
=-
cos2x-sin2x=-2sin(2x+
).
∴f(x)的最小正周期为π.
(Ⅱ)∵x∈[-
,
],∴-
≤2x+
≤π,
∴-
≤sin(2x+
)≤1.∴f(x)的值域为[-2,
].
∵当y=sin(2x+
)递减时,f(x)递增
.∴
≤2x+
≤π,即
≤x≤
.
故f(x)的递增区间为[
,
].
| 3 |
=-
| 3 |
| π |
| 3 |
∴f(x)的最小正周期为π.
(Ⅱ)∵x∈[-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
∴-
| ||
| 2 |
| π |
| 3 |
| 3 |
∵当y=sin(2x+
| π |
| 3 |
.∴
| π |
| 2 |
| π |
| 3 |
| π |
| 12 |
| π |
| 3 |
故f(x)的递增区间为[
| π |
| 12 |
| π |
| 3 |
练习册系列答案
相关题目