题目内容
设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,
则f(x)的图象可以是( )
B
设M={x|x<1},N={x|x2<4},则M∩N=
{x|-1<x<2}
{x|-3<x<-1}
{x|1<x<-4}
{x|-2<x<1}
设h(x)=x+,x∈[,5],其中m是不等于零的常数,
(1)m=1时,直接写出h(x)的值域
(2)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围;
设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )