ÌâÄ¿ÄÚÈÝ

ÒÑÖªµãPn£¨an£¬bn£©£¨n¡ÊN*£©Âú×ãan+1=anbn+1£¬bn+1=
bn
1-4
a
2
n
£¬ÇÒµãP1µÄ×ø±êΪ£¨1£¬-1£©£®
£¨¢ñ£©Çó¾­¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³Ì£»
£¨¢ò£© ÒÑÖªµãPn£¨an£¬bn£©£¨n¡ÊN*£©ÔÚP1£¬P2Á½µãÈ·¶¨µÄÖ±ÏßlÉÏ£¬ÇóÖ¤£ºÊýÁÐ{
1
an
}
ÊǵȲîÊýÁУ®
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Çó¶ÔÓÚËùÓÐn¡ÊN*£¬ÄÜʹ²»µÈʽ£¨1+a1£©£¨1+a2£©¡­£¨1+an£©¡Ýk
1
b2b3¡­bn+1
³ÉÁ¢µÄ×î´óʵÊýkµÄÖµ£®
·ÖÎö£º£¨¢ñ£©ÓÉb2=
b1
1-4a12
=
1
3
£¬ÖªP2(
1
3
£¬
1
3
)
£®ÓÉ´ËÖª¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³ÌΪ2x+y=1£®
£¨¢ò£©ÓÉPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬Öª2an+bn=1£®¹Êbn+1=1-2an+1£®ÓÉan+1=anbn+1£¬µÃan+1=an-2anan+1£®ÓÉ´ËÖª{
1
an
}
Êǹ«²îΪ2µÄµÈ²îÊýÁУ®
£¨¢ó£©ÓÉ
1
an
=
1
a1
+2(n-1)
£®£¬Öª
1
an
=1+2(n-1)=2n-1
£®ËùÒÔan=
1
2n-1
£¬bn=1-2an=
2n-3
2n-1
£®ÒÀÌâÒâk¡Ü(1+a1)(1+a2)(1+an)
b2b3bn+1
ºã³ÉÁ¢£®ÉèF(n)=(1+a1)(1+a2)(1+an)
b2b3bn+1
£¬ËùÒÔÖ»ÐèÇóÂú×ãk¡ÜF£¨n£©µÄF£¨n£©µÄ×îСֵ£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪb2=
b1
1-4a12
=
1
3
£¬ËùÒÔa2=a1b2=
1
3
£®ËùÒÔP2(
1
3
£¬
1
3
)
£®£¨1·Ö£©
ËùÒÔ¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³ÌΪ2x+y=1£®£¨2·Ö£©
£¨¢ò£©ÒòΪPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ËùÒÔ2an+bn=1£®ËùÒÔbn+1=1-2an+1£®£¨3·Ö£©
ÓÉan+1=anbn+1£¬µÃan+1=an£¨1-2an+1£©£®¼´an+1=an-2anan+1£®
ËùÒÔ
1
an+1
-
1
an
=2
£®ËùÒÔ{
1
an
}
Êǹ«²îΪ2µÄµÈ²îÊýÁУ®£¨5·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©µÃ
1
an
=
1
a1
+2(n-1)
£®
ËùÒÔ
1
an
=1+2(n-1)=2n-1
£®
ËùÒÔan=
1
2n-1
£®£¨7·Ö£©
ËùÒÔbn=1-2an=
2n-3
2n-1
£®£¨8·Ö£©
ÒÀÌâÒâk¡Ü(1+a1)(1+a2)(1+an)
b2b3bn+1
ºã³ÉÁ¢£®
ÉèF(n)=(1+a1)(1+a2)(1+an)
b2b3bn+1
£¬
ËùÒÔÖ»ÐèÇóÂú×ãk¡ÜF£¨n£©µÄF£¨n£©µÄ×îСֵ£®£¨10·Ö£©
ÒòΪ
F(n+1)
F(n)
=
(1+a1)(1+a2)(1+an)(1+an+1)
b2b3bn+2
(1+a1)(1+a2)(1+an)
b2b3bn+1

=(1+an+1)
bn+2
=
2n+2
2n+1
2n+3
=
4n2+8n+4
4n2+8n+3
£¾1
£¬
ËùÒÔF£¨n£©£¨x¡ÊN*£©ÎªÔöº¯Êý£®£¨12·Ö£©
ËùÒÔF(n)min=F(1)=
2
3
=
2
3
3
£®
ËùÒÔk¡Ü
2
3
3
£®ËùÒÔkmax=
2
3
3
£®£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ÛºÏÔËÓã¬ÄѶȽϴ󣬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØÑ¡Óù«Ê½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø