ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãPn£¨an£¬bn£©£¨n¡ÊN*£©Âú×ãan+1=anbn+1£¬bn+1=| bn | ||
1-4
|
£¨¢ñ£©Çó¾¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³Ì£»
£¨¢ò£© ÒÑÖªµãPn£¨an£¬bn£©£¨n¡ÊN*£©ÔÚP1£¬P2Á½µãÈ·¶¨µÄÖ±ÏßlÉÏ£¬ÇóÖ¤£ºÊýÁÐ{
| 1 |
| an |
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Çó¶ÔÓÚËùÓÐn¡ÊN*£¬ÄÜʹ²»µÈʽ£¨1+a1£©£¨1+a2£©¡£¨1+an£©¡Ýk
|
·ÖÎö£º£¨¢ñ£©ÓÉb2=
=
£¬ÖªP2(
£¬
)£®ÓÉ´ËÖª¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³ÌΪ2x+y=1£®
£¨¢ò£©ÓÉPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬Öª2an+bn=1£®¹Êbn+1=1-2an+1£®ÓÉan+1=anbn+1£¬µÃan+1=an-2anan+1£®ÓÉ´ËÖª{
}Êǹ«²îΪ2µÄµÈ²îÊýÁУ®
£¨¢ó£©ÓÉ
=
+2(n-1)£®£¬Öª
=1+2(n-1)=2n-1£®ËùÒÔan=
£¬bn=1-2an=
£®ÒÀÌâÒâk¡Ü(1+a1)(1+a2)(1+an)
ºã³ÉÁ¢£®ÉèF(n)=(1+a1)(1+a2)(1+an)
£¬ËùÒÔÖ»ÐèÇóÂú×ãk¡ÜF£¨n£©µÄF£¨n£©µÄ×îСֵ£®
| b1 |
| 1-4a12 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
£¨¢ò£©ÓÉPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬Öª2an+bn=1£®¹Êbn+1=1-2an+1£®ÓÉan+1=anbn+1£¬µÃan+1=an-2anan+1£®ÓÉ´ËÖª{
| 1 |
| an |
£¨¢ó£©ÓÉ
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| 2n-1 |
| 2n-3 |
| 2n-1 |
| b2b3bn+1 |
| b2b3bn+1 |
½â´ð£º½â£º£¨¢ñ£©ÒòΪb2=
=
£¬ËùÒÔa2=a1b2=
£®ËùÒÔP2(
£¬
)£®£¨1·Ö£©
ËùÒÔ¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³ÌΪ2x+y=1£®£¨2·Ö£©
£¨¢ò£©ÒòΪPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ËùÒÔ2an+bn=1£®ËùÒÔbn+1=1-2an+1£®£¨3·Ö£©
ÓÉan+1=anbn+1£¬µÃan+1=an£¨1-2an+1£©£®¼´an+1=an-2anan+1£®
ËùÒÔ
-
=2£®ËùÒÔ{
}Êǹ«²îΪ2µÄµÈ²îÊýÁУ®£¨5·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©µÃ
=
+2(n-1)£®
ËùÒÔ
=1+2(n-1)=2n-1£®
ËùÒÔan=
£®£¨7·Ö£©
ËùÒÔbn=1-2an=
£®£¨8·Ö£©
ÒÀÌâÒâk¡Ü(1+a1)(1+a2)(1+an)
ºã³ÉÁ¢£®
ÉèF(n)=(1+a1)(1+a2)(1+an)
£¬
ËùÒÔÖ»ÐèÇóÂú×ãk¡ÜF£¨n£©µÄF£¨n£©µÄ×îСֵ£®£¨10·Ö£©
ÒòΪ
=
=(1+an+1)
=
=
£¾1£¬
ËùÒÔF£¨n£©£¨x¡ÊN*£©ÎªÔöº¯Êý£®£¨12·Ö£©
ËùÒÔF(n)min=F(1)=
=
£®
ËùÒÔk¡Ü
£®ËùÒÔkmax=
£®£¨14·Ö£©
| b1 |
| 1-4a12 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
ËùÒÔ¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³ÌΪ2x+y=1£®£¨2·Ö£©
£¨¢ò£©ÒòΪPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ËùÒÔ2an+bn=1£®ËùÒÔbn+1=1-2an+1£®£¨3·Ö£©
ÓÉan+1=anbn+1£¬µÃan+1=an£¨1-2an+1£©£®¼´an+1=an-2anan+1£®
ËùÒÔ
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
£¨¢ó£©ÓÉ£¨¢ò£©µÃ
| 1 |
| an |
| 1 |
| a1 |
ËùÒÔ
| 1 |
| an |
ËùÒÔan=
| 1 |
| 2n-1 |
ËùÒÔbn=1-2an=
| 2n-3 |
| 2n-1 |
ÒÀÌâÒâk¡Ü(1+a1)(1+a2)(1+an)
| b2b3bn+1 |
ÉèF(n)=(1+a1)(1+a2)(1+an)
| b2b3bn+1 |
ËùÒÔÖ»ÐèÇóÂú×ãk¡ÜF£¨n£©µÄF£¨n£©µÄ×îСֵ£®£¨10·Ö£©
ÒòΪ
| F(n+1) |
| F(n) |
(1+a1)(1+a2)(1+an)(1+an+1)
| ||
(1+a1)(1+a2)(1+an)
|
=(1+an+1)
| bn+2 |
| 2n+2 | ||||
|
|
ËùÒÔF£¨n£©£¨x¡ÊN*£©ÎªÔöº¯Êý£®£¨12·Ö£©
ËùÒÔF(n)min=F(1)=
| 2 | ||
|
2
| ||
| 3 |
ËùÒÔk¡Ü
2
| ||
| 3 |
2
| ||
| 3 |
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ÛºÏÔËÓã¬ÄѶȽϴ󣬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØÑ¡Óù«Ê½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿