题目内容
设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn是数列{
}的n项和,求Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn是数列{
| 1 | lg(an)•lg(an+2) |
分析:(Ⅰ)当n≥2时,an=9Sn-1+10 ①,又an+1=9Sn+10 ②,两式相减可得递推式,连同a2与a1的关系,可判断数列{an}为等比数列,从而可得an;
(Ⅱ)先由(Ⅰ)求出lg an,lgan+2,进而可得
,拆项后利用裂项相消法可求得Tn.
(Ⅱ)先由(Ⅰ)求出lg an,lgan+2,进而可得
| 1 |
| lg(an)•lg(an+2) |
解答:解:(Ⅰ)依题意,a2=9a1+10=100,故
=10,
当n≥2时,an=9Sn-1+10 ①,
又an+1=9Sn+10 ②,
②-①整理得:
=10,
故{an}为等比数列,且an=10•10n-1=10n;
(Ⅱ) 由(Ⅰ)知,an=10n,∴lg an=n,lgan+2=n+2,
∴
=
=
(
-
),
∴Tn=
(1-
+
-
+
-
+…+
-
+
-
)
=
(1+
-
-
)
=
-
.
| a2 |
| a1 |
当n≥2时,an=9Sn-1+10 ①,
又an+1=9Sn+10 ②,
②-①整理得:
| an+1 |
| an |
故{an}为等比数列,且an=10•10n-1=10n;
(Ⅱ) 由(Ⅰ)知,an=10n,∴lg an=n,lgan+2=n+2,
∴
| 1 |
| lg(an)•lg(an+2) |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
点评:本题考查数列的求和、由递推式求数列通项,考查学生分析解决问题的能力,(Ⅰ)问中要注意n的取值范围,要检验n=1时的情形.
练习册系列答案
相关题目