题目内容
已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*.
(1)若数列{an} 满足
=f′(
),且a1=4,求数列{an} 的通项公式;
(2)若数列{bn}满足:b1=1,bnbn+1=
,当n≥3,n∈N*时,求证:①b2n<b2n+1<b2n-1(n∈N*);②b1+b2+b3+…bn>
-1.
(1)若数列{an} 满足
| 1 |
| an+1 |
| 1 |
| an |
(2)若数列{bn}满足:b1=1,bnbn+1=
| 1 |
| 2 |
| an+1 |
| 2n+1 |
(1)求导函数可得f′(x)=2ax+b,由题意知b=2n,16n2a-4nb=0
∴a=
,b=2n,则f(x)=
x2+2nx,n∈N*. (2分)
∵数列{an} 满足
=f′(
),f′(x)=x+2n,
∵
=
+2n,∴
-
=2n,
∵a1=4,
-
=2+4+…+2(n-1)=n2-n
∴
=(n-
)2
∴an=
(6分)
(2)证明:①由b1=1得b2=
,由bnbn+1=
=
得
=
即
=
,∴
=
<1,∴b2n+1<b2n-1
由
=
及b1=1,b2=
可得:b2n=
•
•…•
,b2n+1=
•
•…•
∵
<
,∴b2n<b2n+1(10分)
②由bnbn+1=
=
得
=2n+1,
=2n+3
相减得bn+1=
(
-
)
由①知:bn≠bn+1
所以b1+b2+b3+…bn=1+
(
-
+
-
+…
-
)=1+
(-
-
+
+
)=-1+
(
+
)>-1+
=
-1(14分)
∴a=
| 1 |
| 2 |
| 1 |
| 2 |
∵数列{an} 满足
| 1 |
| an+1 |
| 1 |
| an |
∵
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
∵a1=4,
| 1 |
| an+1 |
| 1 |
| 4 |
∴
| 1 |
| an |
| 1 |
| 2 |
∴an=
| 4 |
| (2n-1)2 |
(2)证明:①由b1=1得b2=
| 1 |
| 3 |
| 1 |
| 2 |
| an+1 |
| 1 |
| 2n+1 |
| bnbn+1 |
| bn+2bn+1 |
| 2n+3 |
| 2n+1 |
即
| bn+2 |
| bn |
| 2n+1 |
| 2n+3 |
| b2n+1 |
| b2n-1 |
| 4n-1 |
| 4n+1 |
由
| bn+2 |
| bn |
| 2n+1 |
| 2n+3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 5 |
| 7 |
| 4n-3 |
| 4n-1 |
| 3 |
| 5 |
| 7 |
| 9 |
| 4n-1 |
| 4n+1 |
∵
| 4n-3 |
| 4n-1 |
| 4n-1 |
| 4n+1 |
②由bnbn+1=
| 1 |
| 2 |
| an+1 |
| 1 |
| 2n+1 |
| 1 |
| bnbn+1 |
| 1 |
| bn+2bn+1 |
相减得bn+1=
| 1 |
| 2 |
| 1 |
| bn+2 |
| 1 |
| bn |
由①知:bn≠bn+1
所以b1+b2+b3+…bn=1+
| 1 |
| 2 |
| 1 |
| b3 |
| 1 |
| b1 |
| 1 |
| b4 |
| 1 |
| b2 |
| 1 |
| bn+1 |
| 1 |
| bn-1 |
| 1 |
| 2 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| bn+1 |
| 1 |
| bn |
|
| 2n+1 |
练习册系列答案
相关题目