题目内容
已知数列{an}的前n项和为Sn,且Sn=2-
an(n∈N*).
(I)求证:
=
;
(II)求an及Sn;
(III)求证:
+
+
+…+
<
.
| n+2 |
| n |
(I)求证:
| an+1 |
| an |
| n+1 |
| 2n |
(II)求an及Sn;
(III)求证:
| a | 21 |
| a | 22 |
| a | 23 |
| a | 2n |
| 49 |
| 64 |
( I)Sn=2-
an(n∈N*),(1)Sn+1=2-
an+1,(2)(2分)
(2)-(1),得an+1=
an-
an+1,∴
=
.(3分)
( II)当n=1时,a1=S1=2-
a1,a1=
; (4分)
由( I),得an=a1•
•
•
•…•
=
•
•
•
•…•
=
即an=
(7分)
将an=
代入Sn=2-
an(n∈N*),得Sn=
.(8分)
( III)由an=
,则即证(
)2+(
)2+(
)2+…+(
)2<
下证:当n≥4,n∈N*时,2n≥n2.
①当n=4时,24=42,成立;当n=5时,25>52,成立; (9分)
②假设当n=k(k≥4,k∈N*)时,成立,即2k≥k2,则
当n=k+1时,2k+1≥2k2,令f(k)=2k2-(k+1)2=k2-2k-1,k≥4,k∈N*,当k=4时有最小值7,故2k2>(k+1)2,
∴2k+1≥(k+1)2,即n=k+1成立;
由①②得结论成立.(11分)
于是,(
)2<
.
令k=4,5,6,…,n,各式相加,得(
)2+(
)2+(
)2+…+(
)2<
-
,
又(
)2+(
)2+(
)2=
,
两式相加,得(
)2+(
)2+(
)2+…+(
)2<
-
<
.(12分)
| n+2 |
| n |
| n+3 |
| n+1 |
(2)-(1),得an+1=
| n+2 |
| n |
| n+3 |
| n+1 |
| an+1 |
| an |
| n+1 |
| 2n |
( II)当n=1时,a1=S1=2-
| 1+2 |
| 1 |
| 1 |
| 2 |
由( I),得an=a1•
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| an |
| an-1 |
| 1 |
| 2 |
| 2 |
| 2×1 |
| 3 |
| 2×2 |
| 4 |
| 2×3 |
| n |
| 2(n-1) |
| n |
| 2n |
即an=
| n |
| 2n |
将an=
| n |
| 2n |
| n+2 |
| n |
| 2n+1-n-2 |
| 2n |
( III)由an=
| n |
| 2n |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| 49 |
| 64 |
下证:当n≥4,n∈N*时,2n≥n2.
①当n=4时,24=42,成立;当n=5时,25>52,成立; (9分)
②假设当n=k(k≥4,k∈N*)时,成立,即2k≥k2,则
当n=k+1时,2k+1≥2k2,令f(k)=2k2-(k+1)2=k2-2k-1,k≥4,k∈N*,当k=4时有最小值7,故2k2>(k+1)2,
∴2k+1≥(k+1)2,即n=k+1成立;
由①②得结论成立.(11分)
于是,(
| k |
| 2k |
| 1 |
| 2k |
令k=4,5,6,…,n,各式相加,得(
| 4 |
| 24 |
| 5 |
| 25 |
| 6 |
| 26 |
| n |
| 2n |
| 1 |
| 8 |
| 1 |
| 2n |
又(
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| 41 |
| 64 |
两式相加,得(
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| 49 |
| 64 |
| 1 |
| 2n |
| 49 |
| 64 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |