题目内容
若向量
,
满足|
|=1,|
|=2,且
,
的夹角为
,则
•
=
+
|=
.
| a |
| b |
| a |
| b |
| a |
| b |
| π |
| 3 |
| a |
| b |
1
1
,|| a |
| b |
| 7 |
| 7 |
分析:利用向量的数量积的定义和模的计算公式即可得出.
解答:解:∵|
|=1,|
|=2,<
,
>=
,
∴
•
=|
| |
|cos
=1×2×
=1.
|
+
|=
=
=
.
故答案为1,
.
| a |
| b |
| a |
| b |
| π |
| 3 |
∴
| a |
| b |
| a |
| b |
| π |
| 3 |
| 1 |
| 2 |
|
| a |
| b |
|
| 12+2×1+22 |
| 7 |
故答案为1,
| 7 |
点评:熟练掌握向量的数量积的定义和模的计算公式是解题的关键.
练习册系列答案
相关题目