题目内容
已知数列{an}满足a1=2,an+1=an2+an,求证
+
+…+
<
.
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:将an+1=an2+an取倒数,后用裂项想消法化简
+
+…+
=
-
,根据题意可知数列{an}是正项数列.所以结论得证.
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| an+1 |
解答:
证明:∵an+1=an2+an,
∴
=
=
=
-
,
∴
=
-
∴
+
+…+
=
-
+
-
+…+
-
=
-
,
又∵a1=2,an+1=an2+an,
∴an>0,
∴
+
+…+
=
-
=
-
<
.
∴
| 1 |
| an+1 |
| 1 |
| an2+an |
| 1 |
| an(an+1) |
| 1 |
| an |
| 1 |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| an+1 |
=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| a1 |
| 1 |
| an+1 |
又∵a1=2,an+1=an2+an,
∴an>0,
∴
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| an+1 |
=
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| 2 |
点评:本题考查递推公式的应用和裂项项消法的灵活应用,属于中档题.
练习册系列答案
相关题目