题目内容

已知数列{an}满足a1=2,an+1=an2+an,求证
1
a1+1
+
1
a2+1
+…+
1
an+1
1
2
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:将an+1=an2+an取倒数,后用裂项想消法化简
1
a1+1
+
1
a2+1
+…+
1
an+1
=
1
a1
-
1
an+1
,根据题意可知数列{an}是正项数列.所以结论得证.
解答: 证明:∵an+1=an2+an
1
an+1
=
1
an2+an
=
1
an(an+1)
=
1
an
-
1
an+1

1
an+1
=
1
an
-
1
an+1

1
a1+1
+
1
a2+1
+…+
1
an+1

=
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
an
-
1
an+1

=
1
a1
-
1
an+1

又∵a1=2,an+1=an2+an
∴an>0,
1
a1+1
+
1
a2+1
+…+
1
an+1

=
1
a1
-
1
an+1
=
1
2
-
1
an+1
1
2
点评:本题考查递推公式的应用和裂项项消法的灵活应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网