题目内容
(2012•奉贤区一模)函数y=sinx+
cosx,x∈[0,
]的单调递增区间
| 3 |
| π |
| 2 |
[0,
]
| π |
| 6 |
[0,
]
.| π |
| 6 |
分析:由于y=2sin(x+
),由2kπ-
≤x+
≤2kπ+
,结合x∈[0,
]即可得到答案.
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
解答:解:∵y=sinx+
cosx=2sin(x+
),
∴由2kπ-
≤x+
≤2kπ+
得其单调递增区间为:[2kπ-
,2kπ+
](k∈Z),
又x∈[0,
],
∴y=2sin(x+
)在x∈[0,
]的单调递增区间为[0,
].
故答案为:[0,
].
| 3 |
| π |
| 3 |
∴由2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
| π |
| 6 |
又x∈[0,
| π |
| 2 |
∴y=2sin(x+
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
故答案为:[0,
| π |
| 6 |
点评:本题考查两角和与差的正弦函数,考查复合三角函数的单调性,掌握正弦函数的单调性是关键,属于中档题.
练习册系列答案
相关题目