题目内容
已知函数f(x)=cos(2x+
)+2cos2x.
(Ⅰ)求函数f(x)的周期及递增区间;
(Ⅱ)求函数f(x)在[-
,
]上值域.
| π |
| 3 |
(Ⅰ)求函数f(x)的周期及递增区间;
(Ⅱ)求函数f(x)在[-
| π |
| 3 |
| π |
| 3 |
函数f(x)=cos(2x+
)+2cos2x
=cos2xcos
-sin2xsin
+cos2x+1
=
cos2x-
sin2x+1
=1-
sin(2x-
).
(Ⅰ)函数f(x)的周期T=π,
由∵
+2kπ≤2x-
≤
+2kπ,k∈Z
∴
+kπ≤x≤
+kπ,k∈Z
所以y=1-
sin(2x-
)的单调增区间是[
+kπ,
+kπ];
(Ⅱ)∵x∈[-
,
],∴2x-
∈[-π,
],
∴-1≤sin(2x-
)≤
,
函数f(x)在[-
,
]上值域为:[-
,
+1].
| π |
| 3 |
=cos2xcos
| π |
| 3 |
| π |
| 3 |
=
| 3 |
| 2 |
| ||
| 2 |
=1-
| 3 |
| π |
| 3 |
(Ⅰ)函数f(x)的周期T=π,
由∵
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
∴
| 5π |
| 12 |
| 11π |
| 12 |
所以y=1-
| 3 |
| π |
| 3 |
| 5π |
| 12 |
| 11π |
| 12 |
(Ⅱ)∵x∈[-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
∴-1≤sin(2x-
| π |
| 3 |
| ||
| 2 |
函数f(x)在[-
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| 3 |
练习册系列答案
相关题目