题目内容

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).

(1)当a=1,b=-2时,求f(x)的不动点;

(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.

解:(1)当a=1,b=-2时,f(x)=x2-x-3=xx2-2x-3=0(x-3)(x+1)=0x=3或x=-1,

    ∴f(x)的不动点为x=3或x=-1.

    (2)对任意实数b,f(x)恒有两个相异不动点对任意实数b,ax2+(b+1)x+b-1=x恒有两个不等实根对任意实数b,Δ=(b+1)2-4a(b-1)>0恒成立对任意实数b,b2+2(1-4a)b+1+4a>0恒成立Δ′=4(1-4a)2-4(1+4a)<0(1-4a)2-(1+4a)<0

*4a2-3a<0a(4a-3)<00<a<.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网