题目内容
设0<m<
,若
+
≥k恒成立,则k的最大值为______.
| 1 |
| 3 |
| 1 |
| m |
| 3 |
| 1-3m |
∵
=
,∴设
-m=n,得
+
=
+
∵m+n=
,可得3(m+n)=1,∴
+
=(
+
)•3(m+n)=3(2+
+
)
又∵0<m<
,得m、n都是正数,∴
+
≥2
=2
因此,
+
=3(2+
+
)≥3(2+2)=12
当且仅当m=n=
时,
+
=
+
的最小值为12
又∵不等式
+
≥k恒成立,∴12≥k恒成立,可得k的最大值为12
故答案为:12
| 3 |
| 1-3m |
| 1 | ||
|
| 1 |
| 3 |
| 1 |
| m |
| 3 |
| 1-3m |
| 1 |
| m |
| 1 |
| n |
∵m+n=
| 1 |
| 3 |
| 1 |
| m |
| 1 |
| n |
| 1 |
| m |
| 1 |
| n |
| n |
| m |
| m |
| n |
又∵0<m<
| 1 |
| 3 |
| n |
| m |
| m |
| n |
|
因此,
| 1 |
| m |
| 1 |
| n |
| n |
| m |
| m |
| n |
当且仅当m=n=
| 1 |
| 6 |
| 1 |
| m |
| 3 |
| 1-3m |
| 1 |
| m |
| 1 |
| n |
又∵不等式
| 1 |
| m |
| 3 |
| 1-3m |
故答案为:12
练习册系列答案
相关题目