题目内容
计算
+
+
+…+
=
.
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 99×101 |
| 50 |
| 101 |
| 50 |
| 101 |
分析:观察原式的各项发现
=
(
-
),利用此公式对各项进行变形,然后提取
,合并抵消后即可求出值.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
解答:解:∵
=
(
-
),
∴
+
+
+…+
=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+
-
+…+
-
)=
(1-
)
=
.
故答案为:
.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 99×101 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 99 |
| 1 |
| 101 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 99 |
| 1 |
| 101 |
| 1 |
| 2 |
| 1 |
| 101 |
=
| 50 |
| 101 |
故答案为:
| 50 |
| 101 |
点评:此题考查了数列求和的基本方法,利用的方法是裂项相消法,培养了学生的数感、符号感,灵活运用是解本题的关键.
练习册系列答案
相关题目