题目内容
设f(x)=
,则f(2007)+f(2008)+f(2009)+f(2010)=______.
|
由题意可知:f(2007)=sin(
+
)=sin(
+
)=-cos
=-
,
f(2008)=f(2003)=sin(
+
)=sin(
+
)=-cos
=-
,
f(2009)=f(2004)=sin(
+
)=sin
=
,
f(2010)=f(2005)=sin(
+
)=sin(
+
)=cos
=
f(2007)+f(2008)+f(2009)+f(2010)=0.
故答案为:0.
| 2007π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
f(2008)=f(2003)=sin(
| 2003π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
f(2009)=f(2004)=sin(
| 2004π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
f(2010)=f(2005)=sin(
| 2005π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
f(2007)+f(2008)+f(2009)+f(2010)=0.
故答案为:0.
练习册系列答案
相关题目