题目内容
设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,(n∈N*)且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)若数列{bn}满足bn=an+2n,求证数列{bn}是等比数列.
(3)求满足an>
×3n的最小正整数n.
(1)求a1的值;
(2)若数列{bn}满足bn=an+2n,求证数列{bn}是等比数列.
(3)求满足an>
| 4 | 5 |
分析:(1)利用数列递推式,及a1,a2+5,a3成等差数列,即可求a1的值;
(2)再写一式,两式相减,即可证得结论;
(3)确定数列的通项,利用an>
×3n,即可求最小正整数n.
(2)再写一式,两式相减,即可证得结论;
(3)确定数列的通项,利用an>
| 4 |
| 5 |
解答:(1)解:∵2Sn=an+1-2n+1+1,(n∈N*)
∴2a1=a2-3①,2(a1+a2)=a3-7②
∵a1,a2+5,a3成等差数列
∴2(a2+5)=a1+a3,③
∴由①②③可得a1=1;
(2)证明:∵2Sn=an+1-2n+1+1,
∴2Sn-1=an-2n+1(n≥2)
两式相减可得2an=an+1-an-2n
∴an+1=3an+2n
∵数列{bn}满足bn=an+2n,
∴
=
=
=3(n≥2)
∵2a1=a2-3,
∴a2=5
∴b1=3,b2=9
∴
=3
∴数列{bn}是一个以3为首项,公比为3的等比数列.…(9分)
(3)解:由(2)知bn=3n,即an+2n=3n
∴数列{an}的通项公式是an=3n-2n.…(11分)
∴
=1-(
)n>
,即(
)n<
,
所以n≥4,所以n的最小正整数为4.…(15分)
∴2a1=a2-3①,2(a1+a2)=a3-7②
∵a1,a2+5,a3成等差数列
∴2(a2+5)=a1+a3,③
∴由①②③可得a1=1;
(2)证明:∵2Sn=an+1-2n+1+1,
∴2Sn-1=an-2n+1(n≥2)
两式相减可得2an=an+1-an-2n
∴an+1=3an+2n
∵数列{bn}满足bn=an+2n,
∴
| bn+1 |
| bn |
| an+1+2n+1 |
| an+2n |
| 3an+2n+2n+1 |
| an+2n |
∵2a1=a2-3,
∴a2=5
∴b1=3,b2=9
∴
| b2 |
| b1 |
∴数列{bn}是一个以3为首项,公比为3的等比数列.…(9分)
(3)解:由(2)知bn=3n,即an+2n=3n
∴数列{an}的通项公式是an=3n-2n.…(11分)
∴
| an |
| 3n |
| 2 |
| 3 |
| 4 |
| 5 |
| 2 |
| 3 |
| 1 |
| 5 |
所以n≥4,所以n的最小正整数为4.…(15分)
点评:本题考查数列递推式,考查等比数列的证明,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目