题目内容
已知数列{an}的前n项和Sn=| (n+1)an | 2 |
(1)求数列{an}的通项公式;
(2)令bn=lnan,是否存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.
分析:(1)直接利用an=Sn-Sn-1 (n≥2)求解数列的通项公式即可(注意要验证n=1时通项是否成立).
(2)先利用(1)的结论求出数列{bn}的通项,再求出bkbk+2的表达式,利用基本不等式得出不存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.
(2)先利用(1)的结论求出数列{bn}的通项,再求出bkbk+2的表达式,利用基本不等式得出不存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.
解答:解:(1)当n≥2时,an=Sn-Sn-1=
-
,(2分)
即
=
(n≥2).(4分)
所以数列{
}是首项为
=1的常数列.(5分)
所以
=1,即an=n(n∈N*).
所以数列{an}的通项公式为an=n(n∈N*).(7分)
(2)假设存在k(k≥2,m,k∈N*),使得bk、bk+1、bk+2成等比数列,
则bkbk+2=bk+12.(8分)
因为bn=lnan=lnn(n≥2),
所以bkbk+2=lnk•ln(k+2)<[
]2=[
]2
<[
]2=[ln(k+1)]2=
.(13分)
这与bkbk+2=bk+12矛盾.
故不存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.(14分)
| (n+1)an |
| 2 |
| nan-1 |
| 2 |
即
| an |
| n |
| an-1 |
| n-1 |
所以数列{
| an |
| n |
| a1 |
| 1 |
所以
| an |
| n |
所以数列{an}的通项公式为an=n(n∈N*).(7分)
(2)假设存在k(k≥2,m,k∈N*),使得bk、bk+1、bk+2成等比数列,
则bkbk+2=bk+12.(8分)
因为bn=lnan=lnn(n≥2),
所以bkbk+2=lnk•ln(k+2)<[
| lnk+ln(k+2) |
| 2 |
| ln(k2+2k) |
| 2 |
<[
| ln(k+1)2 |
| 2 |
| b | 2 k+1 |
这与bkbk+2=bk+12矛盾.
故不存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.(14分)
点评:本题考查了已知前n项和为Sn求数列{an}的通项公式,根据an和Sn的关系:an=Sn-Sn-1 (n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:an=Sn-Sn-1 (n≥1);若不成立,则通项公式为分段函数.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |