题目内容

已知关于x的方程a(
1
4
)x-(
1
2
)x+2=0
在区间[-1,0]上有实数根,则实数a的取值范围是
[-1,0]
[-1,0]
分析:分离参数,再利用换元法,可得二次函数,利用配方法,结合函数的单调性,即可得出实数a的取值范围.
解答:解:分类参数可得:a=-2×(2x2+2x(x∈[-1,0])
令2x=t(t∈[
1
2
,1],a=-2t2+t=-2(t-
1
4
)
2
+
1
8

∴函数在[
1
2
,1]上单调减
∴a∈[-1,0]
故答案为:[-1,0]
点评:本题考查方程根的研究,解决问题的关键是分离参数,再采用换元法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网