题目内容
已知数列{an}的前n项和为Sn且满足3Sn-4an=2n-4,n∈N*.(1)证明:当n≥2时,an=4an-1-2;
(2)求数列{an}的通项公式;
(3)设cn=
| an |
| an+1 |
| 2n+1 |
| 8 |
分析:(1)利用3Sn-4an=2n-4,可得3Sn-1-4an-1=2(n-1)-4,两式作差即可.
(2)由(1)的结论,把an=4an-1-2转化为an-
=4(an-1-
);即{an-
}为等比数列,可求数列{an}的通项公式;
(3)由(2)的结论求出数列{cn}的通项公式,再对数列{cn}的通项公式放缩后分离常数,分组求和即可.
(2)由(1)的结论,把an=4an-1-2转化为an-
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
(3)由(2)的结论求出数列{cn}的通项公式,再对数列{cn}的通项公式放缩后分离常数,分组求和即可.
解答:解:(1)3Sn-4an=2n-4,①
得当n≥2时,3Sn-1-4an-1=2(n-1)-4 ②
①-②得,3(Sn-Sn-1)-4an+4an-1=2?-an+4an-1=2?an=4an-1-2;
(2)∵当n≥2时,an=4an-1-2;?an-
=4(an-1-
);?{an-
}是以a1-
为首项4为公比的等比数列.
又3S1-4a1=2-4?a1=2?a1-
=
∴an-
=
•4n-1?an=
+
•4n-1=
.
(3)∵cn=
=
<
=
+
当n=1时,T1=
=
<
n≥2时,Tn=c1+c2+c3+…+cn<
+
+2(
+
+…+
)
=
+
+2×
=
-
<
综上,对所有的正整数n,都有 Tn<
.
得当n≥2时,3Sn-1-4an-1=2(n-1)-4 ②
①-②得,3(Sn-Sn-1)-4an+4an-1=2?-an+4an-1=2?an=4an-1-2;
(2)∵当n≥2时,an=4an-1-2;?an-
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
又3S1-4a1=2-4?a1=2?a1-
| 2 |
| 3 |
| 4 |
| 3 |
∴an-
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4n+2 |
| 3 |
(3)∵cn=
| an |
| an+1 |
| 4n+2 |
| 4n+1+2 |
| 4n+ 2 |
| 4n+1 |
| 1 |
| 4 |
| 2 |
| 4n+1 |
当n=1时,T1=
| a1 |
| a2 |
| 1 |
| 3 |
| 3 |
| 8 |
n≥2时,Tn=c1+c2+c3+…+cn<
| a1 |
| a2 |
| n-1 |
| 4 |
| 1 |
| 43 |
| 1 |
| 44 |
| 1 |
| 4n+1 |
=
| 1 |
| 3 |
| n-1 |
| 4 |
| ||||||
1-
|
| 2n+1 |
| 8 |
| 2 |
| 3•4n+1 |
| 2n+1 |
| 8 |
综上,对所有的正整数n,都有 Tn<
| 2n+1 |
| 8 |
点评:本题考查了数列求和的分组求和法.数列求和的常用方法有:裂项求和,错位相减法求和,分组求和,倒序相加求和,公式法等.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |