题目内容

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

【解析】(1)依题意,解得(负根舍去)

抛物线的方程为

(2)设点,

,即

∴抛物线在点处的切线的方程为

.

, ∴ .

∵点在切线上,   ∴.        ①

同理, .  ②

综合①、②得,点的坐标都满足方程 .

∵经过两点的直线是唯一的,

∴直线 的方程为,即

(3)由抛物线的定义可知

所以

联立,消去

 

时,取得最小值为

【解析】2013广州模直接命中了这一题,广一模20题解法2正是本科第(2)问的解法,并且广一模大题结构和高考完全一致. 紫霞仙子:我的意中人是个盖世英雄,有一天他会踩着七色云彩来娶我,我只猜中了前头,可是我却猜不中这结局……形容这次高考,妙极!

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网