题目内容
已知函数f(x)=sin2
+
sin
cos
-
.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)将y=f(x)的图象向左平移
个单位,得到函数y=g(x)(x>0)的图象.若的图象与直线y=
交点的横坐标由小到大依次是x1,x2,…,xn,求数列{xn}的前2n项的和.
| x |
| 2 |
| 3 |
| x |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)将y=f(x)的图象向左平移
| π |
| 6 |
| 1 |
| 2 |
(Ⅰ)f(x)=sin2
+
sin
cos
-
=
+
sinx-
=
sinx-
cosx
=sin(x-
).
由2kπ≤x-
≤2kπ+
,得2kπ-
≤x≤2kπ+
(k∈Z)
所以f(x)的单调递增区间是[2kπ-
,2kπ+
](k∈Z)
(Ⅱ)函数f(x)=sin(x-
)的图象向左平移
个单位后,得到函数y=sinx的图象,
即g(x)=sinx,
若函数g(x)=sinx(x>0)的图象与直线y=
交点的横坐标由小到大依次是x1,x2,…,xn,
则由正弦曲线的对称性,周期性得:
=
,
=2π+
,…,
=2(n-1)π+
,
所以x1+x2+…+x2n-1+x2n
=(x1+x2)+(x3+x4)+…+(x2n-1+x2n)
=π+5π+9π+…+(4n-3)π
=[n×1+
×4]•π
=(2n2-n)π
| x |
| 2 |
| 3 |
| x |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
=
| 1-cosx |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
=sin(x-
| π |
| 6 |
由2kπ≤x-
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
所以f(x)的单调递增区间是[2kπ-
| π |
| 3 |
| 2π |
| 3 |
(Ⅱ)函数f(x)=sin(x-
| π |
| 6 |
| π |
| 6 |
即g(x)=sinx,
若函数g(x)=sinx(x>0)的图象与直线y=
| 1 |
| 2 |
则由正弦曲线的对称性,周期性得:
| x1+x2 |
| 2 |
| π |
| 2 |
| x3+x4 |
| 2 |
| π |
| 2 |
| x2n-1+x2n |
| 2 |
| π |
| 2 |
所以x1+x2+…+x2n-1+x2n
=(x1+x2)+(x3+x4)+…+(x2n-1+x2n)
=π+5π+9π+…+(4n-3)π
=[n×1+
| n(n-1) |
| 2 |
=(2n2-n)π
练习册系列答案
相关题目