题目内容

数列{an}中,a1=1,an+1=2an-n2+3n,(n∈N*).
(1)求a2,a3的值;
(2)试求λ、μ的值,使得数列{ann2+μn}为等比数列;
(3)设数列{bn}满足:bn=
1
an+n-2n-1
,Sn为数列{bn}的前n项和.证明:n≥2时,
6n
(n+1)(2n+1)
Sn
5
3
分析:(1)利用数列递推式,代入计算,可得结论;
(2)设an+1=2an-n2+3n,可化为an+1+λ(n+1)2+μ(n+1)=2(an-λn2+μn),利用条件,即可求λ、μ的值;
(3)确定数列的通项,利用放缩法,即可证明结论.
解答:(1)解:∵a1=1,an+1=2an-n2+3n
∴a2=2a1-1+3=4,a3=2a2-4+6=10;
(2)解:设an+1=2an-n2+3n,可化为an+1+λ(n+1)2+μ(n+1)=2(an-λn2+μn),
即an+1=2an-λn2+(μ-2λ)n-λ-μ,
∴λ=-1,μ=2
又a1+12+1≠0
故存在λ=-1,μ=1  使得数列{an+λn2+μn}是等比数列;
(3)证明:由(2)得an-n2+n=(a1-12+1)•2n-1
∴an=2n-1+n2-n,
bn=
1
an+n-2n-1
=
1
n2

1
n2
2
2n-1
-
2
2n+1

∴n≥2时,Sn=b1+b2+b3+…+bn<1+(
2
3
-
2
5
)+…+(
2
2n-1
-
2
2n+1
)=1+
2
3
-
2
2n+1

证明Sn
6n
(n+1)(2n+1)

当n=2时,Sn=b1+b2=1+
1
4
=
5
4

而当n≥3时,由bn=
1
n2
1
n
-
1
n+1
得Sn=b1+b2+b3+…+bn
n
n+1

由2n+1>6,得1>
6
2n+1

Sn
6n
(n+1)(2n+1)
对于n≥2,n∈N*都成立,
∴n≥2时,
6n
(n+1)(2n+1)
Sn
5
3
点评:本题考查数列与不等式的综合应用,列出等比数列的判定,考查不等式的证明,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网