题目内容
(本小题满分13分)已知函数f
(x) = ![]()
(1)若函数f (x)在其定义域内为单调函数,求实数a的取值范围;
(2)若函数f (x)的图象在x = 1处的切线垂直于y轴,数列{
}满足
.
①若a1≥3,求证:an≥n + 2
;
②若a1 = 4,试比较
的大小,并说明你的理由.
①a≥1或a≤0.②<
【解析】(1)∵f (1) =
a – b = 0,∴a = b,∴f′(x) =
.要使函数f (x)在其定义域内为单调函数,则
(0,+∞)内
(x) =
恒大于等于零,或恒小于等于零.
由
得
而
由
得
而
经验证a=0及a=1均合题意,故![]()
∴所求实数a的取值范围为a≥1或a≤0. ………………………5分
(2)∵函数f (x)的图象在x = 1处的切线的斜率为0,∴f′(1) = 0,即a + a – 2 = 0,解得a = 1,∴f′(x) =
,∴an + 1 = f′
……7分
①用数学归纳法证明:(i)当n
= 1时,a1≥3 = 1 + 2,不等式成立;(ii)假设当n = k时不等式成立,即
那么ak – k≥2>0,∴ak + 1 = ak (ak – k) + 1≥2 (k + 2) + 1 = (k
+ 3) + k + 2>k + 3,也就是说,当n
= k + 1时,ak + 1≥(k + 1) + 2.根据(i)和(ii),对于所有n≥1,有an≥n + 2.
……………………………………10分
②由an + 1 = an (an – n) + 1及①,对k≥2,有ak = ak – 1 (ak–1
– k + 1) + 1≥ak –1 (k – 1 + 2 – k + 1) + 1 = 2ak–1 + 1,∴ak + 1≥2 (ak–1 + 1)≥22
(ak – 2 + 1)≥23 (ak –3 + 1)≥…≥2k–1
(a1 + 1)
而
,于是当k≥2时,![]()
![]()
…………………………13分