题目内容

设集合A{(xy)|x1},B={(xy)|42x-2y+5=0},C={(xy)|ykxb},问:是否存在自然数kb,使得(ABC?证明你的结论

 

答案:
解析:

存在自然数k=1,b=2,使得结论成立.

证明:∵ 

  ∴ 

  若,则(kxb2x+1无解.

  ∴  k2x2+(2bk-1)xb2-1=0的判别式

  若,则无解.

  ∴  的判别式

  由kb是自然数,

  ∴  8≤8b≤20-(k-1)2≤20.

  故k=1,2,3时,1≤b≤2.

  经验证存在k=1,b=2时满足条件

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网