题目内容
在△ABC中,a、b、c分别是∠A、∠B、∠C所对边的边长,若(a+b+c)(sinA+sinB-sinC)=a•sinB,则∠C等于
- A.

- B.

- C.
π - D.
π
D
分析:利用正弦定理化简已知的等式,再利用余弦定理表示出cosC,将得出的等式变形后代入cosC中,求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.
解答:利用正弦定理化简(a+b+c)(sinA+sinB-sinC)=a•sinB得:(a+b+c)(a+b-c)=ab,
整理得:(a+b)2-c2=ab,即a2+b2-c2=-ab,
∴cosC=
=
=-
,
又∠C为三角形的内角,
则∠C=
.
故选D
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键.
分析:利用正弦定理化简已知的等式,再利用余弦定理表示出cosC,将得出的等式变形后代入cosC中,求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.
解答:利用正弦定理化简(a+b+c)(sinA+sinB-sinC)=a•sinB得:(a+b+c)(a+b-c)=ab,
整理得:(a+b)2-c2=ab,即a2+b2-c2=-ab,
∴cosC=
又∠C为三角形的内角,
则∠C=
故选D
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键.
练习册系列答案
相关题目
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是( )
A、
| ||||
| B、1 | ||||
C、
| ||||
D、
|