题目内容
从{
,
,2,3}中随机抽取一个数记为a,从{-1,1,-2,2}中随机抽取一个数记为b,则函数y=ax+b的图象经过第三象限的概率是______.
| 1 |
| 3 |
| 1 |
| 2 |
根据题意,从集合{
,
,2,3}中随机抽取一个数记为a,有4种情况.
从{-1,1,-2,2}中随机抽取一个数记为b,有4种情况,则f(x)=ax+b的情况有4×4=16.
函数f(x)=ax+b的图象经过第三象限,有①当a=3、b=-1时,②当a=3、b=-2时,③当a=4、b=-1时,
④当a=4、b=-2时,⑤当a=
,b=-2 时,⑥当a=
,b=-2 时,共6种情况,
则函数的图象经过第三象限的概率为
=
,
故答案为
.
| 1 |
| 3 |
| 1 |
| 2 |
从{-1,1,-2,2}中随机抽取一个数记为b,有4种情况,则f(x)=ax+b的情况有4×4=16.
函数f(x)=ax+b的图象经过第三象限,有①当a=3、b=-1时,②当a=3、b=-2时,③当a=4、b=-1时,
④当a=4、b=-2时,⑤当a=
| 1 |
| 3 |
| 1 |
| 2 |
则函数的图象经过第三象限的概率为
| 6 |
| 16 |
| 3 |
| 8 |
故答案为
| 3 |
| 8 |
练习册系列答案
相关题目
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
| 日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x(°C) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
| y |
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?