题目内容
对于集合M,定义函数fM(x)=
,对于两个集合M,N,定义集合M?N={x|fM(x)•fN(x)=-1.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)写出fA(2)与fB(2)的值,并用列举法写出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数,求Card(X?A)+Card(x?b)的最小值;
(Ⅲ)有多少个集合对(P,Q),满足P,Q⊆A∪B,且(P?A)?(Q?B)=A?B.
|
(Ⅰ)写出fA(2)与fB(2)的值,并用列举法写出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数,求Card(X?A)+Card(x?b)的最小值;
(Ⅲ)有多少个集合对(P,Q),满足P,Q⊆A∪B,且(P?A)?(Q?B)=A?B.
(Ⅰ)fA(2)=-1,fB(2)=1,
∴A?B={2,4,5,6,9,27,81}.…(3分)
(Ⅱ)X?A={x|x∈X∪A,x∉X∩A},X?B={x|x∈X∪B,x∉X∩B}
要使Card(X?A)+Card(X?B)的值最小,
1,3一定属于集合X,X不能含有A∪B以外的元素,
所以当集合X为{2,4,5,6,9,27,81}的子集与集合{1,3}的并集时,
Card(X?A)+Card(X?B)的值最小,最小值是7 …(8分)
(Ⅲ)因为fA?B(x)=fA(x)•fB(x),
f(A?B)?C(x)=fA(x)•fB(x)•fC(x)
所以?运算具有交换律和结合律,
所以(P?A)?(Q?B)=(P?Q)?(A?B)
而(P?A)?(Q?B)=(A?B)
所以P?Q=∅,所以P=Q,而A∪B={1,2,3,4,5,6,9,27,81}
所以满足条件的集合对(P,Q)有29=512个 …(13分)
∴A?B={2,4,5,6,9,27,81}.…(3分)
(Ⅱ)X?A={x|x∈X∪A,x∉X∩A},X?B={x|x∈X∪B,x∉X∩B}
要使Card(X?A)+Card(X?B)的值最小,
1,3一定属于集合X,X不能含有A∪B以外的元素,
所以当集合X为{2,4,5,6,9,27,81}的子集与集合{1,3}的并集时,
Card(X?A)+Card(X?B)的值最小,最小值是7 …(8分)
(Ⅲ)因为fA?B(x)=fA(x)•fB(x),
f(A?B)?C(x)=fA(x)•fB(x)•fC(x)
所以?运算具有交换律和结合律,
所以(P?A)?(Q?B)=(P?Q)?(A?B)
而(P?A)?(Q?B)=(A?B)
所以P?Q=∅,所以P=Q,而A∪B={1,2,3,4,5,6,9,27,81}
所以满足条件的集合对(P,Q)有29=512个 …(13分)
练习册系列答案
相关题目
对于集合M,定义函数fM(x)=
,对于两个集合M,N,定义集合M*N={x|fM(x)•fN(x)=-1},已知A={2,4,6},B={1,2,4},则下列结论不正确的是( )
|
| A、1∈A*B |
| B、2∈A*B |
| C、4∉A*B |
| D、A*B=B*A |