题目内容
已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-
,(n≥2,n∈N*).
(I)求数列{an}的通项公式;
(II) 已知bn>an,(n≥2,n∈N*),求证:(1+
)(1+
)(1+
)…(1+
)<
.
| n(n-1) |
| 2 |
(I)求数列{an}的通项公式;
(II) 已知bn>an,(n≥2,n∈N*),求证:(1+
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| b4b5 |
| 1 |
| bnbn+1 |
| 3 | e |
(I)当n≥3时,由sn=nan+2-
,
Sn-1=(n-1)an-1+2-
,
可得an=nan-(n-1)an-1-
×2,
故an-an-1=1(n≥3,n∈N+).
所以an=
(II)设f(x)=ln(1+x)-x,则f'(x)=
-1=
<0,
故f(x)在(0,+∞)上单调递减,∴f(x)<f(0),即ln(1+x)<x
∵n≥2时,
<
=
,ln(1+
)<
<
=
-
,
∴ln(1+
)+ln(1+
)+…+ln(1+
)<
-
+
-
+…+
-
=
-
<
.
∴(1+
)(1+
)(1+
)…(1+
)<
.
| n(n-1) |
| 2 |
Sn-1=(n-1)an-1+2-
| (n-1)(n-2) |
| 2 |
可得an=nan-(n-1)an-1-
| n-1 |
| 2 |
故an-an-1=1(n≥3,n∈N+).
所以an=
|
(II)设f(x)=ln(1+x)-x,则f'(x)=
| 1 |
| 1+x |
| -x |
| 1+x |
故f(x)在(0,+∞)上单调递减,∴f(x)<f(0),即ln(1+x)<x
∵n≥2时,
| 1 |
| bn |
| 1 |
| an |
| 1 |
| n+1 |
| 1 |
| bn•bn+1 |
| 1 |
| bn•bn+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴ln(1+
| 1 |
| b2•b3 |
| 1 |
| b3• b4 |
| 1 |
| bn•bn+1 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3 |
| 1 |
| n+2 |
| 1 |
| 3 |
∴(1+
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| b4b5 |
| 1 |
| bnbn+1 |
| 3 | e |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |