题目内容

已知等差数列{an}的各项均为正数,且满足a3a5+a3a8+a5a10+a8a10=64,则a1+a12=________.

解法一:依题意得,a5(a3+a10)+a8(a3+a10)=64,

即(a3+a10)(a5+a8)=64,

∵a3+a10=a5+a8=a1+a12>0,

∴(a1+a12)2=64,∴a1+a12=8.

解法二:由于常数列是等差数列,且本题为填空题,故可设an=a(n∈N+,a>0),则题设等式即为4a2=64,

∴a=4,∴a1+a12=2a=8.

解法三:由(a3+a10)(a5+a8)=64得

(a1+2d+a1+9d)(a1+4d+a1+7d)=64,

即(2a1+11d)2=64.

又a1+a12=2a1+11d,

∴(a1+a12)2=64.又a1+a12>0,

∴a1+a12=8.

答案:8

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网