题目内容

若数列{an}满足a1=
1
2
,a1+a2+…+an=n2an,则数列{an}的前60项和为______.
∵数列{an}的前n项的和Sn=a1+a2+…+an,∴Sn=n2an
当n≥2时,Sn-1=(n-1)2an-1,两式相减得an=n2an-(n-1)2an-1
即(n2-1)an=(n-1)2an-1,故
an
an-1
=
n-1
n+1

an
a1
=
a2
a1
×
a3
a2
×
a4
a3
×…×
an
an-1
=
1
3
×
2
4
×…×
n-2
n
×
n-1
n+1
=
2
n(n+1)

结合a1=
1
2
,可得an=
1
n(n+1)

当n=1时,也满足上式,故an=
1
n(n+1)
对任意n∈N+成立,
可得an=
1
n(n+1)
=
1
n
-
1
n+1

因此,数列数列{an}的前n项和为Sn=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1

∴{an}的前60项和为
60
61

故答案为:
60
61
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网