题目内容
| OA |
| BC |
| 3 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
分析:由⊙O的半径为1,点A,B,C是⊙O上的点,且∠AOB=30°,AC=2AB,知|
|2=12+12-2cos30°=2-
,|
|2=4|
|2=8-4
,由此能求出
•
的值.
| AB |
| 3 |
| AC |
| AB |
| 3 |
| OA |
| BC |
解答:解:如图,∵⊙O的半径为1,点A,B,C是⊙O上的点,且∠AOB=30°,AC=2AB,
∴|
|2=12+12-2cos30°=2-
,
|
|2=4|
|2=8-4
,
∴
•
=
•(
-
)
=
•
-
•
=
|
|2-
|
|2
=
-3.
故答案为:
-3.
| AB |
| 3 |
|
| AC |
| AB |
| 3 |
∴
| OA |
| BC |
=
| OA |
| AC |
| AB |
=
| AO |
| AB |
| AO |
| AC |
=
| 1 |
| 2 |
| AB |
| 1 |
| 2 |
| AC |
=
| 3 |
| 2 |
| 3 |
故答案为:
| 3 |
| 2 |
| 3 |
点评:主要考查向量数量积等运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目