题目内容

已知函数f(x)=logax在x∈[3,+∞)上,恒有|f(x)|>1,则实数a的取值范围是______.
当a>1时,∵x∈[3,+∞),∴y=f(x)=logax>0,
由|f(x)|>1,得logax>1=logaa,∴a<x对任意x∈[3,+∞)恒成立.
于是:1<a<3.
当0<a<1时,
∵x∈[3,+∞),
∴y=f(x)=logax<0,
由|f(x)|>1,得-logax=loga
1
x
>1=logaa,
∴a>
1
x
对任意x∈[3,+∞)恒成立.
于是:
1
3
<a<1. 
综上:a∈(
1
3
,1)∪(1,3).
故答案为:
1
3
<a<3
且a≠1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网