题目内容

已知f(x)=x2-alnx在(1,2]上是增函数,g(x)=x-a
x
在(0,1)上是减函数.
(1)求a的值;
(2)设函数φ(x)=2bx-
1
x2
在(0,1]上是增函数,且对于(0,1]内的任意两个变量s,t,恒有f(s)≥φ(t)成立,求实数b的取值范围;
(3)设h(x)=f′(x)-g(x)-2
x
+
3
x
,求证:[h(x)]n+2≥h(xn)+2n(n∈N*).
分析:(1)依题意,当x∈(1,2]时,f'(x)≥0恒成立,即a≤(2x2min可得a≤2,当x∈(0,1)时,g'(x)≤0恒成立,即a≥2,从而可求a
(2)由导数可得f(x)在(0,1]上是减函数,最小值是f(1)=1.φ(x)=2bx-
1
x2
在(0,1]上是增函数可得φ′(x)=2b+
2
x3
≥0
恒成立,得b≥-1,且φ(x)的最大值是φ(1)=2b-1,则1≥2b-1可求b的范围
(3)由已知可得h(x)=x+
1
x

n=1时不等式左右相等,得证;n≥2时,利用二项展开式进行放缩可证
解答:解:(1)f′(x)=2x-
a
x
,依题意,当x∈(1,2]时,f'(x)≥0恒成立,即a≤(2x2min⇒a≤2.g′(x)=1-
a
2
x
,当x∈(0,1)时,g'(x)≤0恒成立,即a≥2,所以a=2.…(5分)
(2)f′(x)=2x-
2
x
=
2(x+1)(x-1)
x
,所以f(x)在(0,1]上是减函数,最小值是f(1)=1.φ(x)=2bx-
1
x2
在(0,1]上是增函数,即φ′(x)=2b+
2
x3
≥0
恒成立,得b≥-1,且φ(x)的最大值是φ(1)=2b-1,
由已知得1≥2b-1⇒b≤1,所以b的取值范围是[-1,1].…(5分)
(3)h(x)=f′(x)-g(x)-2
x
+
3
x
=…=x+
1
x

n=1时不等式左右相等,得证;
n≥2时,[h(x)]n-h(xn)=(x+
1
x
)n-(xn+
1
xn
)=
C
1
n
xn-2+
C
2
n
xn-4+…+
C
n-1
n
x2-n
=
1
2
[
C
1
n
(xn-2+x2-n)+
C
2
n
(xn-4+x4-n)+…+
C
n-1
n
(x2-n+xn-2)]≥
C
1
n
+
C
2
n
+…+
C
n-1
n
=2n-2

所以[h(x)]n+2≥h(xn)+2n(n∈N*)成立.…(5分)
点评:本题主要考查了由函数的导数判断函数的单调性,函数的恒成立与函数的最值的相互转化,利用二项展开式的进行证明不等式,属于知识的综合考查
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网