ÌâÄ¿ÄÚÈÝ
| PE |
| PB |
| PF |
| PC |
£¨¢ñ£©ÇóÖ¤£ºEF¡ÎÆ½ÃæPAD£»
£¨¢ò£©µ±¦Ë=
| 1 |
| 2 |
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃÆ½ÃæAFD¡ÍÆ½ÃæPCD£¿Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÓÉ
=
=¦Ë¿ÉÖª£¬EF¡ÎBC£¬ÒÀÌâÒ⣬¿ÉÇóµÃEF¡ÎAD£¬ÔÙÀûÓÃÏßÃæÆ½ÐеÄÅж϶¨Àí¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨¢ò£©¿ÉÖ¤µÃPA£¬AB£¬ADÁ½Á½´¹Ö±£¬ÒÔ֮ΪÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬¿ÉÇóµÃ
Óë
µÄ×ø±ê£¬ÀûÓÃÏòÁ¿µÄÊýÁ¿»ý¼´¿ÉÇóµÃÒìÃæÖ±ÏßBFÓëCDËù³É½ÇµÄÓàÏÒÖµ£»
£¨¢ó£©ÉèF£¨x0£¬y0£¬z0£©£¬Ôò
=£¨x0£¬y0£¬z0-2£©£¬
=£¨1£¬1£¬-2£©£¬ÓÉ
=¦Ë
£¬¿ÉÇóµÃF£¨¦Ë£¬¦Ë£¬2-2¦Ë£©£¬ÔÙÉè³öÆ½ÃæAFDµÄÒ»¸ö·¨ÏòÁ¿Îªn1=£¨x1£¬y1£¬z1£©£¬Æ½ÃæPCDµÄÒ»¸ö·¨ÏòÁ¿Îªn2=£¨x2£¬y2£¬z2£©£¬¿ÉÇóµÃÕâÁ½¸ö·¨ÏòÁ¿µÄ×ø±ê£¬ÀûÓÃn1•n2=0£¬¼´¿ÉÇóµÃ¦ËµÄÖµ£®
| PE |
| PB |
| PF |
| PC |
£¨¢ò£©¿ÉÖ¤µÃPA£¬AB£¬ADÁ½Á½´¹Ö±£¬ÒÔ֮ΪÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬¿ÉÇóµÃ
| BF |
| CD |
£¨¢ó£©ÉèF£¨x0£¬y0£¬z0£©£¬Ôò
| PF |
| PC |
| PF |
| PC |
½â´ð£º
Ö¤Ã÷£º£¨¢ñ£©ÓÉÒÑÖª£¬
=
=¦Ë£¬
ËùÒÔEF¡ÎBC£®
ÒòΪBC¡ÎAD£¬ËùÒÔEF¡ÎAD£®
¶øEF?Æ½ÃæPAD£¬AD?Æ½ÃæPAD£¬
ËùÒÔEF¡ÎÆ½ÃæPAD£® ¡£¨4·Ö£©
£¨¢ò£©ÒòÎªÆ½ÃæABCD¡ÍÆ½ÃæPAC£¬
Æ½ÃæABCD¡ÉÆ½ÃæPAC=AC£¬ÇÒPA¡ÍAC£¬
ËùÒÔPA¡ÍÆ½ÃæABCD£®
ËùÒÔPA¡ÍAB£¬PA¡ÍAD£®
ÓÖÒòΪAB¡ÍAD£¬
ËùÒÔPA£¬AB£¬ADÁ½Á½´¹Ö±£® ¡£¨5·Ö£©
ÈçͼËùʾ£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÒòΪAB=BC=1£¬PA=AD=2£¬
ËùÒÔA£¨0£¬0£¬0£©£¬B£¨1£¬0£¬0£©£¬C£¨1£¬1£¬0£©£¬D£¨0£¬2£¬0£©£¬P£¨0£¬0£¬2£©£®
µ±¦Ë=
ʱ£¬FΪPCÖе㣬
ËùÒÔF£¨
£¬
£¬1£©£¬
ËùÒÔ
=£¨-
£¬
£¬1£©£¬
=£¨-1£¬1£¬0£©£®
ÉèÒìÃæÖ±ÏßBFÓëCDËù³ÉµÄ½ÇΪ¦È£¬
ËùÒÔcos¦È=|cos£¼
£¬
£¾|=
=
£¬
ËùÒÔÒìÃæÖ±ÏßBFÓëCDËù³É½ÇµÄÓàÏÒֵΪ
£®¡£¨9·Ö£©
£¨¢ó£©ÉèF£¨x0£¬y0£¬z0£©£¬Ôò
=£¨x0£¬y0£¬z0-2£©£¬
=£¨1£¬1£¬-2£©£®
ÓÉÒÑÖª
=¦Ë
£¬ËùÒÔ£¨x0£¬y0£¬z0-2£©=¦Ë£¨1£¬1£¬-2£©£¬
ËùÒÔ
£¬
¡à
=£¨¦Ë£¬¦Ë£¬2-2¦Ë£©£®
ÉèÆ½ÃæAFDµÄÒ»¸ö·¨ÏòÁ¿Îªn1=£¨x1£¬y1£¬z1£©£¬ÒòΪ
=£¨0£¬2£¬0£©£¬
ËùÒÔ
¼´
£¬
Áîz1=¦Ë£¬µÃn1=£¨2¦Ë-2£¬0£¬¦Ë£©£®
ÉèÆ½ÃæPCDµÄÒ»¸ö·¨ÏòÁ¿Îªn2=£¨x2£¬y2£¬z2£©£¬
ÒòΪ
=£¨0£¬2£¬-2£©£¬
=£¨-1£¬1£¬0£©£¬
ËùÒÔ
¼´
Áîx2=1£¬Ôòn2=£¨1£¬1£¬1£©£®
ÈôÆ½ÃæAFD¡ÍÆ½ÃæPCD£¬Ôòn1•n2=0£¬ËùÒÔ£¨2¦Ë-2£©+¦Ë=0£¬½âµÃ¦Ë=
£®
ËùÒÔµ±¦Ë=
ʱ£¬Æ½ÃæAFD¡ÍÆ½ÃæPCD£®¡£¨14·Ö£©
| PE |
| PB |
| PF |
| PC |
ËùÒÔEF¡ÎBC£®
ÒòΪBC¡ÎAD£¬ËùÒÔEF¡ÎAD£®
¶øEF?Æ½ÃæPAD£¬AD?Æ½ÃæPAD£¬
ËùÒÔEF¡ÎÆ½ÃæPAD£® ¡£¨4·Ö£©
£¨¢ò£©ÒòÎªÆ½ÃæABCD¡ÍÆ½ÃæPAC£¬
Æ½ÃæABCD¡ÉÆ½ÃæPAC=AC£¬ÇÒPA¡ÍAC£¬
ËùÒÔPA¡ÍÆ½ÃæABCD£®
ËùÒÔPA¡ÍAB£¬PA¡ÍAD£®
ÓÖÒòΪAB¡ÍAD£¬
ËùÒÔPA£¬AB£¬ADÁ½Á½´¹Ö±£® ¡£¨5·Ö£©
ÈçͼËùʾ£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÒòΪAB=BC=1£¬PA=AD=2£¬
ËùÒÔA£¨0£¬0£¬0£©£¬B£¨1£¬0£¬0£©£¬C£¨1£¬1£¬0£©£¬D£¨0£¬2£¬0£©£¬P£¨0£¬0£¬2£©£®
µ±¦Ë=
| 1 |
| 2 |
ËùÒÔF£¨
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔ
| BF |
| 1 |
| 2 |
| 1 |
| 2 |
| CD |
ÉèÒìÃæÖ±ÏßBFÓëCDËù³ÉµÄ½ÇΪ¦È£¬
ËùÒÔcos¦È=|cos£¼
| BF |
| CD |
|(-
| ||||||||
|
| ||
| 3 |
ËùÒÔÒìÃæÖ±ÏßBFÓëCDËù³É½ÇµÄÓàÏÒֵΪ
| ||
| 3 |
£¨¢ó£©ÉèF£¨x0£¬y0£¬z0£©£¬Ôò
| PF |
| PC |
ÓÉÒÑÖª
| PF |
| PC |
ËùÒÔ
|
¡à
| AF |
ÉèÆ½ÃæAFDµÄÒ»¸ö·¨ÏòÁ¿Îªn1=£¨x1£¬y1£¬z1£©£¬ÒòΪ
| AD |
ËùÒÔ
|
|
Áîz1=¦Ë£¬µÃn1=£¨2¦Ë-2£¬0£¬¦Ë£©£®
ÉèÆ½ÃæPCDµÄÒ»¸ö·¨ÏòÁ¿Îªn2=£¨x2£¬y2£¬z2£©£¬
ÒòΪ
| PD |
| CD |
ËùÒÔ
|
|
Áîx2=1£¬Ôòn2=£¨1£¬1£¬1£©£®
ÈôÆ½ÃæAFD¡ÍÆ½ÃæPCD£¬Ôòn1•n2=0£¬ËùÒÔ£¨2¦Ë-2£©+¦Ë=0£¬½âµÃ¦Ë=
| 2 |
| 3 |
ËùÒÔµ±¦Ë=
| 2 |
| 3 |
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÆ½ÃæµÄƽÐУ¬¿¼²éÒìÃæÖ±ÏßËù³ÉµÄ½Ç£¬¿¼²é̾̾´¹Ö±£¬Í»³ö¿¼²é¿Õ¼äÖ±½Ç×ø±êϵÔÚÖ¤Ã÷Óë¼ÆËãÖеÄÓ¦Óã®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿