题目内容
已知数列{an}满足:a1=1,an+1=(1+
)an+
(1)求数列{an}的通项公式
(2)记数列{3n-2an}的前n项和为Sn,求证:Sn<
.
| 1 |
| n |
| n+1 |
| 3n |
(1)求数列{an}的通项公式
(2)记数列{3n-2an}的前n项和为Sn,求证:Sn<
| 9 |
| 4 |
分析:(1)根据题意得an+1=(1+
)an+
⇒
=
+
,然后利用累加法可求出数列{an}的通项公式;
(2)先求出数列{3n-2an}的通项公式,然后利用错位相减法求出数列{3n-2an}的前n项Sn即可.
| 1 |
| n |
| n+1 |
| 3n |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| 3n |
(2)先求出数列{3n-2an}的通项公式,然后利用错位相减法求出数列{3n-2an}的前n项Sn即可.
解答:解:(1)an+1=(1+
)an+
⇒
=
+
∴
-
=
,
-
=
,…
-
=
由累加法可得an=
n-
•(
)n-1
(2)3n-2an=n•(
)n-1而数列{3n-2an}的前n项和为Sn,
Sn=1+2(
)1+3(
)2+…n(
)n-1
Sn=
+2(
)2+…(n-1)(
)n-1+n(
)n
Sn=1+
+(
)2+…(
)n-1-(
)n
由错位相减法,易得Sn=
-(
+
n)•(
)n<
| 1 |
| n |
| n+1 |
| 3n |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| 3n |
∴
| a2 |
| 2 |
| a1 |
| 1 |
| 1 |
| 31 |
| a3 |
| 3 |
| a2 |
| 2 |
| 1 |
| 32 |
| an |
| n |
| an-1 |
| n-1 |
| 1 |
| 3n-1 |
由累加法可得an=
| 3 |
| 2 |
| n |
| 2 |
| 1 |
| 3 |
(2)3n-2an=n•(
| 1 |
| 3 |
Sn=1+2(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
由错位相减法,易得Sn=
| 9 |
| 4 |
| 9 |
| 4 |
| 3 |
| 2 |
| 1 |
| 3 |
| 9 |
| 4 |
点评:本题主要考查了利用累加法求数列通项,以及利用错位相消法求数列的和,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目