题目内容
(2012•天津模拟)数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列{Sn+λ-n+
}为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)已知数列{bn},bn=
,bn的前n项和为Tn,求证:
≤Tn<
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列{Sn+λ-n+
| λ |
| 2n |
(Ⅲ)已知数列{bn},bn=
| 2-n |
| (an+1)(an+1+1) |
| 1 |
| 6 |
| 1 |
| 2 |
分析:(Ⅰ)由题意可得:2an+1 +Sn-2=0,n≥2时,2an-1+sn-1-2=0,相减化简得
=
(n≥2),可得
{an}是首项为1,公比为
的等比数列,由此求出通项公式.
(Ⅱ)利用等比数列求和公式求出 Sn ,分析可得欲使 {Sn+λ-n+
}成等差数列,只须λ-2=0,由此得出结论.
(Ⅲ)化简
等于
(
-
),由此求得Tn =
-
.再由 y=
,在[1,+∞)上为增函数,可得
≤
<1,从而得
-
≤
-
<1-
,由此证得结论成立.
| an+1 |
| an |
| 1 |
| 2 |
{an}是首项为1,公比为
| 1 |
| 2 |
(Ⅱ)利用等比数列求和公式求出 Sn ,分析可得欲使 {Sn+λ-n+
| λ |
| 2n |
(Ⅲ)化简
| 1 |
| (ak+1)(ak+1+1) |
| 1 |
| 2k |
| 1 | ||
|
| 1 | ||
|
| 2n |
| 2n+1 |
| 1 |
| 2 |
| 2x |
| 2x+1 |
| 2 |
| 3 |
| 2n |
| 2n+1 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2n |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(Ⅰ)由题意可得:2an+1 +Sn-2=0,①
n≥2时,2an-1+sn-1-2=0. ②
①─②得 2an+1 -an =0,故
=
(n≥2).
再由a1=1,可得a2=
.
∴{an}是首项为1,公比为
的等比数列,
∴an=(
)n-1. …(4分)
(Ⅱ)∵Sn =
=2-
,
∴Sn+λ-n+
=2-
+λn+
=2+λn+( λ-2)
.
欲使 {Sn+λ-n+
}成等差数列,只须λ-2=0,即λ=2便可.
故存在实数λ=2,使得数列{Sn+λ-n+
}成等差数列.…(9分)
(Ⅲ)∵
=
=
(
-
).
∴Tn =
=
(
-
)
=(
-
)+(
-
)+(
-
)+…+(
-
)
=
-
=
-
.
又函数 y=
=
在[1,+∞)上为增函数,可得
≤
<1,
∴
-
≤
-
<1-
,即
≤
<
,即
≤Tn<
. …(14分)
n≥2时,2an-1+sn-1-2=0. ②
①─②得 2an+1 -an =0,故
| an+1 |
| an |
| 1 |
| 2 |
再由a1=1,可得a2=
| 1 |
| 2 |
∴{an}是首项为1,公比为
| 1 |
| 2 |
∴an=(
| 1 |
| 2 |
(Ⅱ)∵Sn =
1×[1-(
| ||
1-
|
| 1 |
| 2n-1 |
∴Sn+λ-n+
| λ |
| 2n |
| 1 |
| 2n-1 |
| λ |
| 2n |
| 1 |
| 2n |
欲使 {Sn+λ-n+
| λ |
| 2n |
故存在实数λ=2,使得数列{Sn+λ-n+
| λ |
| 2n |
(Ⅲ)∵
| 1 |
| (ak+1)(ak+1+1) |
| 1 | ||||
(
|
| 1 |
| 2k |
| 1 | ||
|
| 1 | ||
|
∴Tn =
| n |
| i=1 |
| 2-k |
| (ak+1)(ak+1+1) |
| n |
| i=1 |
| 1 | ||
|
| 1 | ||
|
=(
| 1 | ||
|
| 1 |
| 1+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
=
| 1 | ||
|
| 1 |
| 1+1 |
| 2n |
| 2n+1 |
| 1 |
| 2 |
又函数 y=
| 2x |
| 2x+1 |
| 1 | ||
|
| 2 |
| 3 |
| 2n |
| 2n+1 |
∴
| 2 |
| 3 |
| 1 |
| 2 |
| 2n |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| n |
| i=1 |
| 2-k |
| (ak+1)(ak+1+1) |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
点评:本题主要考查等差关系的确定,等比数列的通项公式,用裂项法进行数列求和,数列与不等式的综合应用,属于难题.
练习册系列答案
相关题目