题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,且满足
(1)求角A的大小;
(2)若,求△ABC面积的最大值.
解:(1)∵,所以
(2c﹣b)cosA=acosB
由正弦定理,得(2sinC﹣sinB)cosA=sinAcosB.
整理得2sinCcosA﹣sinBcosA=sinAcosB.
∴2sinCcosA=sin(A+B)=sinC.
在△ABC中,sinC≠0.

(2)由余弦定理
∴b2+c2﹣20=bc≥2bc﹣20
∴bc≤20,当且仅当b=c时取“=”.
∴三角形的面积
∴三角形面积的最大值为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网