题目内容
已知数列{an}满足an>0,a1=m,其中0<m<1,函数f(x)=
.
(1)若数列{an}满足an+1=f(an),(n≥1,n∈N),求an;
(2)若数列{an}满足an+1≤f(an),(n≥1,n∈N).数列{bn}满足bn=
,求证:b1+b2+…+bn<1.
| x |
| 1+x |
(1)若数列{an}满足an+1=f(an),(n≥1,n∈N),求an;
(2)若数列{an}满足an+1≤f(an),(n≥1,n∈N).数列{bn}满足bn=
| an |
| n+1 |
分析:(1)由an+1=
,知
=
=1+
.所以
-
=1 (n≥1,n∈N),由此能求出an.(2)由an+1≤
, (an>0,n>1,n∈N).知
≥
=
+1,所以
-
≥1 (k=2,…n).由此能够证明b1+b2+…+bn<1.
| an |
| 1+an |
| 1 |
| an+1 |
| 1+an |
| an |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| an |
| 1+an |
| 1 |
| ak |
| 1+ak-1 |
| ak-1 |
| 1 |
| ak-1 |
| 1 |
| ak |
| 1 |
| ak-1 |
解答:解:(1)由题设知an+1=
,
∴
=
=1+
.
∴
-
=1 (n≥1,n∈N)
∴{
}是以
=
为首项1为差的等差数列,
∴
=
+(n-1)×1=
∴an=
(2)由条件可得:an+1≤
, (an>0,n>1,n∈N).
∴
≥
=
+1
∴
-
≥1 (k=2,…n)
∴
-
≥1,
-
≥1,…,
-
≥1
∴
-
≥n-1
am≤
(n≥1, n∈N)
∵0<m<1
∴
>1
∴ak≤
=
<
(k=1,2,.,,,n)
∴bk=
<
=
=
(k=1,2,…,n)
∴b1+b2+…+bn<(1-
)+(
-
)+…+(
-
)=1-
<1.
| an |
| 1+an |
∴
| 1 |
| an+1 |
| 1+an |
| an |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| m |
∴
| 1 |
| an |
| 1 |
| m |
| 1+(n-1)•m |
| m |
∴an=
| m |
| 1+(n-1)•m |
(2)由条件可得:an+1≤
| an |
| 1+an |
∴
| 1 |
| ak |
| 1+ak-1 |
| ak-1 |
| 1 |
| ak-1 |
∴
| 1 |
| ak |
| 1 |
| ak-1 |
∴
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| an-1 |
∴
| 1 |
| an |
| 1 |
| a1 |
am≤
| m |
| 1+(n-1)•m |
∵0<m<1
∴
| 1 |
| m |
∴ak≤
| m |
| 1+(k-1)•m |
| 1 | ||
|
| 1 |
| k |
∴bk=
| ak |
| k+1 |
| 1 |
| k•(k+1) |
| 1 |
| k |
| 1 |
| k+1 |
∴b1+b2+…+bn<(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,注意递推公式的灵活运用.
练习册系列答案
相关题目