题目内容
【题目】已知数列
满足
.
(1)证明:数列
为等差数列;
(2)设数列
的前n项和为
,若
,且对任意的正整数n,都有
,求整数
的值;
(3)设数列
满足
,若
,且存在正整数s,t,使得
是整数,求
的最小值.
【答案】(1)证明见解析;(2)2;(3)![]()
【解析】
(1)令
中的
为
,又得一式,将两式做差变形,利用等差中项进行证明;
(2)利用放缩法和裂项相消法在数列求和中的应用进行证明.
(3)利用假设法的应用和存在性问题的应用求出最小值.
解:(1)因为
①
所以
时,
②
①-②得
,
所以![]()
即![]()
所以数列
为等差数列;
(2)因为
,所以
的公差为1,
因为对任意的正整数
,都有
,
所以
,所以
,即
,
所以
或2,
当
时,
,
,
,
所以
,这与题意矛盾,所以
,
当
时,
,
,
,
恒成立,
因为
,
![]()
,
综上,
的值为2.
(3)因为
,所以
的公差为
,
所以
,
所以
,
由题意,设存在正整数s,t,使得
,
,
则
,即
,
因为
,
所以
是偶数,
所以
,
所以
,
当
时,
,
所以存在
,
综上,
的最小值为
.
【题目】某果园种植“糖心苹果”已有十余年,根据其种植规模与以往的种植经验,产自该果园的单个“糖心苹果”的果径(最大横切面直径,单位:
)在正常环境下服从正态分布
.
(1)一顾客购买了20个该果园的“糖心苹果”,求会买到果径小于56
的概率;
(2)为了提高利润,该果园每年投入一定的资金,对种植、采摘、包装、宣传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额
(单位:万元)与年利润增量
(单位:万元)的散点图:
![]()
该果园为了预测2019年投资金额为20万元时的年利润增量,建立了
关于
的两个回归模型;
模型①:由最小二乘公式可求得
与
的线性回归方程:
;
模型②:由图中样本点的分布,可以认为样本点集中在曲线:
的附近,对投资金额
做交换,令
,则
,且有
,
,
,
.
(I)根据所给的统计量,求模型②中
关于
的回归方程;
(II)根据下列表格中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测投资金额为20万元时的年利润增量(结果保留两位小数).
回归模型 | 模型① | 模型② |
回归方程 |
|
|
| 102.28 | 36.19 |
附:若随机变量
,则
,
;样本
的最小乘估计公式为
,
;
相关指数
.
参考数据:
,
,
,
.