ÌâÄ¿ÄÚÈÝ
ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢ÙÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒam+an=as+at£¨m¡¢n¡¢s¡¢t¡ÊN*£©£¬Ôòm+n=s+t£»
¢ÚÈôSnÊǵȲîÊýÁÐ{an}µÄǰnÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ²îÊýÁУ»
¢ÛÈôSnÊǵȱÈÊýÁÐ{an}µÄǰnÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ±ÈÊýÁУ»
¢ÜÈôSnÊǵȱÈÊýÁÐ{an}µÄǰnÏîµÄºÍ£¬ÇÒSn=Aqn+B£»£¨ÆäÖÐA¡¢BÊÇ·ÇÁã³£Êý£¬n¡ÊN*£©£¬ÔòA+BΪÁ㣮
¢ÙÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒam+an=as+at£¨m¡¢n¡¢s¡¢t¡ÊN*£©£¬Ôòm+n=s+t£»
¢ÚÈôSnÊǵȲîÊýÁÐ{an}µÄǰnÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ²îÊýÁУ»
¢ÛÈôSnÊǵȱÈÊýÁÐ{an}µÄǰnÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ±ÈÊýÁУ»
¢ÜÈôSnÊǵȱÈÊýÁÐ{an}µÄǰnÏîµÄºÍ£¬ÇÒSn=Aqn+B£»£¨ÆäÖÐA¡¢BÊÇ·ÇÁã³£Êý£¬n¡ÊN*£©£¬ÔòA+BΪÁ㣮
| A£®¢Ù¢Ú | B£®¢Ú¢Û | C£®¢Ú¢Ü | D£®¢Û¢Ü |
¢ÙÈ¡ÊýÁÐ{an}Ϊ³£ÊýÁУ¬¶ÔÈÎÒâm¡¢n¡¢s¡¢t¡ÊN*£¬¶¼ÓÐam+an=as+at£¬¹Ê´í£»
¢ÚÉèµÈ²îÊýÁÐanµÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÔòSn=a1+a2+¡+an£¬S2n-Sn=an+1+an+2+¡+a2n=a1+nd+a2+nd+¡+an+nd=Sn+n2d£¬
ͬÀí£ºS3n-S2n=a2n+1+a2n+2+¡+a3n=an+1+an+2+¡+a2n+n2d=S2n-Sn+n2d£¬
¡à2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬
¡àSn£¬S2n-Sn£¬S3n-S2nÊǵȲîÊýÁУ¬´ËÑ¡ÏîÕýÈ·£»
¢ÛÉèan=£¨-1£©n£¬ÔòS2=0£¬S4-S2=0£¬S6-S4=0£¬
¡à´ËÊýÁв»ÊǵȱÈÊýÁУ¬´ËÑ¡Ïî´í£»
¢ÜÒòΪan=Sn-Sn-1=£¨Aqn+B£©-£¨Aqn-1+B£©=Aqn-Aqn-1=£¨Aq-1£©¡Áqn-1£¬
ËùÒÔ´ËÊýÁÐΪÊ×ÏîÊÇAq-1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÔòSn=
£¬
ËùÒÔB=
£¬A=-
£¬¡àA+B=0£¬¹ÊÕýÈ·£»
¹ÊÑ¡C£®
¢ÚÉèµÈ²îÊýÁÐanµÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÔòSn=a1+a2+¡+an£¬S2n-Sn=an+1+an+2+¡+a2n=a1+nd+a2+nd+¡+an+nd=Sn+n2d£¬
ͬÀí£ºS3n-S2n=a2n+1+a2n+2+¡+a3n=an+1+an+2+¡+a2n+n2d=S2n-Sn+n2d£¬
¡à2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬
¡àSn£¬S2n-Sn£¬S3n-S2nÊǵȲîÊýÁУ¬´ËÑ¡ÏîÕýÈ·£»
¢ÛÉèan=£¨-1£©n£¬ÔòS2=0£¬S4-S2=0£¬S6-S4=0£¬
¡à´ËÊýÁв»ÊǵȱÈÊýÁУ¬´ËÑ¡Ïî´í£»
¢ÜÒòΪan=Sn-Sn-1=£¨Aqn+B£©-£¨Aqn-1+B£©=Aqn-Aqn-1=£¨Aq-1£©¡Áqn-1£¬
ËùÒÔ´ËÊýÁÐΪÊ×ÏîÊÇAq-1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÔòSn=
| (Aq-1)(1-qn) |
| 1-q |
ËùÒÔB=
| Aq-1 |
| 1-q |
| Aq-1 |
| 1-q |
¹ÊÑ¡C£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿