题目内容
在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB、sinA、sinC成等比数列,试判断△ABC的形状.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB、sinA、sinC成等比数列,试判断△ABC的形状.
(Ⅰ)由△ABC中,由b2+c2=a2+bc 可得cosA=
=
,∴A=
.
(Ⅱ)若sinB、sinA、sinC成等比数列,则由正弦定理可得 a2=bc.
再由 b2+c2=a2+bc,可得 b2+c2=2bc,(b-c)2=0,∴b=c.
再由A=
,可得△ABC为等边三角形.
| b2+c2-a2 |
| 2bc |
| 1 |
| 2 |
| π |
| 3 |
(Ⅱ)若sinB、sinA、sinC成等比数列,则由正弦定理可得 a2=bc.
再由 b2+c2=a2+bc,可得 b2+c2=2bc,(b-c)2=0,∴b=c.
再由A=
| π |
| 3 |
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |