题目内容

已知函数f(x)=|ax-1|-2a(a>0,且a≠1)有两个零点,则a的取值范围是
(0,
1
2
(0,
1
2
分析:由题意可得f(x)=|ax-1|-2a=0,即|ax-1|=2a.函数y=|ax-1|(a>0,且a≠1)与函数y=2a的图象有两个交点,无论当0<a<1时还是 当a>1时,而直线y=2a所过的点(0,2a)一定在点(0,1)的之间,由此求得实数a的取值范围.
解答:解:设函数f(x)=|ax-1|-2a=0即|ax-1|=2a.
函数f(x)=|ax-1|-2a(a>0,且a≠1)有两个零点,即函数y=|ax-1|(a>0,且a≠1)与函数y=2a的图象有两个交点,
由图象可知当0<2a<1时两函数时,一定有两个交点.
所以实数a的取值范围是{a|0<a<
1
2
}.
故答案为:(0,
1
2
).
点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网