题目内容
已知函数f(x)=|ax-1|-2a(a>0,且a≠1)有两个零点,则a的取值范围是
(0,
)
| 1 |
| 2 |
(0,
)
.| 1 |
| 2 |
分析:由题意可得f(x)=|ax-1|-2a=0,即|ax-1|=2a.函数y=|ax-1|(a>0,且a≠1)与函数y=2a的图象有两个交点,无论当0<a<1时还是 当a>1时,而直线y=2a所过的点(0,2a)一定在点(0,1)的之间,由此求得实数a的取值范围.
解答:
解:设函数f(x)=|ax-1|-2a=0即|ax-1|=2a.
函数f(x)=|ax-1|-2a(a>0,且a≠1)有两个零点,即函数y=|ax-1|(a>0,且a≠1)与函数y=2a的图象有两个交点,
由图象可知当0<2a<1时两函数时,一定有两个交点.
所以实数a的取值范围是{a|0<a<
}.
故答案为:(0,
).
函数f(x)=|ax-1|-2a(a>0,且a≠1)有两个零点,即函数y=|ax-1|(a>0,且a≠1)与函数y=2a的图象有两个交点,
由图象可知当0<2a<1时两函数时,一定有两个交点.
所以实数a的取值范围是{a|0<a<
| 1 |
| 2 |
故答案为:(0,
| 1 |
| 2 |
点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|