题目内容
已知数列{an}满足:a1=1,an+1=
(n∈N*),设bn=a2n-1.
(I)求b2,b3,并证明:bn+1=2bn+2;
(II)①证明:数列{bn+2}为等比数列;②若a2k,a2k+1,9+a2k+2成等比数列,求正整数k的值.
|
(I)求b2,b3,并证明:bn+1=2bn+2;
(II)①证明:数列{bn+2}为等比数列;②若a2k,a2k+1,9+a2k+2成等比数列,求正整数k的值.
分析:(I)由题设条b2=a3=2a2=2(a1+1)=4,b3=a5=2a4=2(a3+1)=10,由此能够证明bn+1=2bn+2.
(II)①由b1=a1=1,b1+2≠0,知
=
=2,由此能够证明数列{bn+2}为等比数列.
②由①知bn+2=3×2n-1,从而得到bn=3×2n-1-2,a2n=a2n-1+1=3×2n-1-1,再由a2k,a2k+1,9+a2k+2成等比数列,能够求出正整数k的值.
(II)①由b1=a1=1,b1+2≠0,知
| bn+1+2 |
| bn+2 |
| 2bn+2+2 |
| bn+2 |
②由①知bn+2=3×2n-1,从而得到bn=3×2n-1-2,a2n=a2n-1+1=3×2n-1-1,再由a2k,a2k+1,9+a2k+2成等比数列,能够求出正整数k的值.
解答:解:(I)∵数列{an}满足:a1=1,an+1=
(n∈N*),设bn=a2n-1,
∴b2=a3=2a2=2(a1+1)=4,
b3=a5=2a4=2(a3+1)=10,
同理,bn+1=a2n+1=2a2n=2(a2n+1+1)=2(bn+1)=2bn+2.
(II)①b1=a1=1,b1+2≠0,
=
=2,
∴数列{bn+2}为等比数列.
②由①知bn+2=3×2n-1,
∴bn=3×2n-1-2,
∴a2n+1=3×2n-1-2,
a2n=a2n-1+1=3×2n-1-1,
∵a2k,a2k+1,9+a2k+2成等比数列,
∴(3×2k-2)2=(3-2k-1-1)(3×2k+8),
令2k=t,得(3t-2)2=(
t-1)(3t+8),
整理,得3t2-14t+8=0,
解得t=
或t=4,
∵k∈N*,∴2k=4,解得k=2.
|
∴b2=a3=2a2=2(a1+1)=4,
b3=a5=2a4=2(a3+1)=10,
同理,bn+1=a2n+1=2a2n=2(a2n+1+1)=2(bn+1)=2bn+2.
(II)①b1=a1=1,b1+2≠0,
| bn+1+2 |
| bn+2 |
| 2bn+2+2 |
| bn+2 |
∴数列{bn+2}为等比数列.
②由①知bn+2=3×2n-1,
∴bn=3×2n-1-2,
∴a2n+1=3×2n-1-2,
a2n=a2n-1+1=3×2n-1-1,
∵a2k,a2k+1,9+a2k+2成等比数列,
∴(3×2k-2)2=(3-2k-1-1)(3×2k+8),
令2k=t,得(3t-2)2=(
| 3 |
| 2 |
整理,得3t2-14t+8=0,
解得t=
| 2 |
| 3 |
∵k∈N*,∴2k=4,解得k=2.
点评:本题考查数列递推公式的应用,考查等比数列的性质的灵活运用,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目