题目内容
已知函数f(x)=2cos2x+2| 3 |
(1)求函数f(x)的周期;
(2)求函数f(x)单调增区间;
(3)求函数f(x)在x∈[0,
| π |
| 2 |
分析:(1)利用三角公式化简函数f(x)的解析式为2sin(
+2x),由周期T=
求出周期.
(2)由 2kπ-
≤
+2x≤2kπ+
,k∈z,解得x的范围即可得到函数f(x)单调增区间.
(3)由 0≤x≤
,得到
≤
+2x≤
,故有-
≤sin(
+2x)≤1,从而得到函数f(x)在x∈[0,
]的值域.
| π |
| 6 |
| 2π |
| ω |
(2)由 2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(3)由 0≤x≤
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 2 |
解答:解:(1)函数f(x)=2cos2x+2
sinxcosx-1(x∈R)=cos2x+
sin2x=2(
cos2x+
sin2x)=2sin(
+2x),∴周期T=
=
=π.
(2)由 2kπ-
≤
+2x≤2kπ+
,k∈z,可得 kπ-
≤x≤kπ+
,
故函数f(x)单调增区间为[kπ-
,kπ+
].
(3)∵0≤x≤
,∴
≤
+2x≤
,∴-
≤sin(
+2x)≤1,
∴-1≤2sin(
+2x)≤2,故 函数f(x)在x∈[0,
]的值域为[-1,2].
| 3 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
| 2π |
| ω |
| 2π |
| 2 |
(2)由 2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
故函数f(x)单调增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(3)∵0≤x≤
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
∴-1≤2sin(
| π |
| 6 |
| π |
| 2 |
点评:本题考查正弦函数的定义域、值域、单调性,两角和的正弦公式及二倍角公式的应用,利用单调性求sin(
+2x)的值域是解题的难点.
| π |
| 6 |
练习册系列答案
相关题目