题目内容
数列{an}的前n项和为Sn,若an=
,则S5=( )
| 1 |
| n(n+1) |
分析:由an=
=
-
,利用裂项求和法能求出S5.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵an=
=
-
,
∴S5=a1+a2+a3+a4+a5
=(1-
)+(
-
)+(
-
)+(
-
)+(
-
)
=1-
=
.
故选D.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S5=a1+a2+a3+a4+a5
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
=1-
| 1 |
| 6 |
=
| 5 |
| 6 |
故选D.
点评:本题考查数列前n项和的求法,是基础题.解题是要认真审题,注意裂项求法的灵活运用.
练习册系列答案
相关题目