题目内容
已知抛物线
:
(
)与椭圆
:
相交所得的弦长为
.
(Ⅰ)求抛物线
的标准方程;
(Ⅱ)设
,
是
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,当
,
变化且
为定值
(
)时,证明:直线
恒过定点,并求出该定点的坐标.
练习册系列答案
相关题目
10.我们把焦距和短轴相等的椭圆称为“等轴椭圆”.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,一“等轴椭圆”与该双曲线有相同的焦点,且双曲线的渐近线与椭圆相交于第一象限内的一点M,若直线F1M的斜率为$\frac{\sqrt{2}}{4}$,则该双曲线的离心率为( )
| A. | $\frac{3\sqrt{22}}{14}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{3\sqrt{22}}{14}$或$\frac{\sqrt{6}}{2}$ |
8.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是( )
| A. | ax+by+cz | B. | az+by+cx | C. | ay+bz+cx | D. | ay+bx+cz |
10.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,点M为AB1的中点,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P、Q可以重合),则MP+PQ的最小值为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |