题目内容
(本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足
。
(Ⅰ)求角C的大小;
(Ⅱ)求
的最大值。
解析本题主要余弦定理、三角形面积公式、三角变换等基础知识,同时考查三角运算求解能力。
(Ⅰ)解:由题意可知
absinC=
,2abcosC.
所以tanC=
.
因为0<C<
,
所以C=
.
(Ⅱ)解:由已知sinA+sinB=sinA+sin(
-C-A)=sinA+sin(
-A)
=sinA+
cosA+
sinA=
sin(A+
)≤
.
当△ABC为正三角形时取等号,
所以sinA+sinB的最大值是
.
练习册系列答案
相关题目